549

NCU PHD PROGRAM ENTRANCE EXAM: ANALYSIS

(May 14, 2010)

Stage Setting: In the following problems, whenever not specified, the functions are assumed be real-valued.

- (1) Let $\{a_n\}$ and $\{b_n\}$ be bounded sequences in \mathbb{R} with $a_n, b_n \geq 0$ for all n. Prove that $\liminf a_n \cdot \liminf b_n \leq \liminf (a_n b_n)$. (10%)
- (2) Let $f:[0,1] \to \mathbb{R}$ be defined by setting f(0) = 0 and $f(x) = x^3 \cos(1/x^2)$ if $x \in (0,1]$. Determine whether f is absolutely continuous on [0,1]. Prove your answer. (10%)
- (3) Let f, f_1, f_2, \cdots be measurable functions on the measure space (X, \mathcal{B}, μ) , and, $f_n \ge f_{n+1}$ for $n = 1, 2, \cdots$.
 - (a) If $f_n \to f$ in measure, prove that $f_n \to f$ almost everywhere. (10%)
 - (b) If $f_n \to f$ almost everywhere, prove or disprove that $f_n \to f$ in measure. (5%)
- (4) For each n let the function $f_n:[0,1]\to\mathbb{R}$ be defined by $f_n(x)=\frac{nx^{n-1}}{1+x}$ for all $x\in[0,1]$. Then show that $\lim_{n\to\infty}\int_0^1 f_n(x)dx=\frac{1}{2}$. (10%)
- (5) Consider a measurable space (X, \mathfrak{B}) . Suppose $\{\mu_n\}$ is a sequence of measures on (X, \mathfrak{B}) with μ_n increasing to a measure μ , that is, $\mu_n(A)$ is increasing to $\mu(A)$ for every $A \in \mathfrak{B}$. Then for every nonnegative measurable function f, prove that $\int_X f d\mu_n$ is increasing to $\int_X f d\mu$. (15%)
- (6) Let $1 and <math>f \in L^1(\mathbb{R})$, $g \in L^p(\mathbb{R})$. For each $x \in \mathbb{R}$, let $h_x(y) = f(x y)g(y)$, $y \in \mathbb{R}$. Prove that h_x is Lebesgue integrable on \mathbb{R} and the function $H(x) = \int_{\mathbb{R}} f(x y)g(y)dy$ is in $L^p(\mathbb{R})$ with $||H||_p \le ||f||_1 ||g||_p$. (15%)
- (7) Let $C = C([0,1], \mathbb{R})$ be the normed space of all continuous real-valued functions on [0,1] with the norm $||f||_1 = \int_0^1 |f(x)| dx$. Let

 $U = \{ f \in C : ||f||_{\infty} \le 1 \};$

V =the closure of the set $\{p \in C : p \text{ is a polynomial}\}$ in C;

 $W = \{ f \in C : 1 < \int_0^1 f(x) dx < 2 \};$

 $X = \{f_0, f_1, f_2, f_3, \dots\}, \text{ where } f_n \in C \text{ for all } n \geq 1 \text{ and } f_n \rightarrow f_0 \text{ uniformly on } [0, 1];$

Y =the closure of A in C, where

 $A = \{ f \in \mathbb{C} : f \text{ is differentiable on } (0,1), f(0) = 1 \text{ and } |f'| \leq 2 \}.$

- (a) Which sets are compact in C? If the set is compact, give your proof. (10%)
- (b) Which sets are complete in \mathbb{C} ? (Don't need to prove it.) (5%)
- (c) Prove that the integral equation

$$f(x) = \int_0^x e^{-xy} f(y) dy, \quad x \in [0, 1],$$

has a unique solution $f \in U$ (10%)