國立中央大學數學研究所博士班入學考試

科目:代數

日期: 5月14日

- 1. (25 %) Let k be a field and let k[x] be the ring of polynomials in x with coefficients in k. Let M be a k[x]-module.
 - (a) Let \widetilde{M} be the sum of all k[t]-submodule V such that $\dim_k V < \infty$. Prove that $\overline{M} = M_{\text{tor}}$ where M_{tor} denotes the torsion k[t]-submodule of M.
 - (b) Suppose that M_{tor} is a direct sum of cyclic modules N_1, \ldots, N_4 whose annhilators are the ideals I_j , j=1,2,3,4 generated by the polynomials $p_1(t)^{l_1}, p_2(t)^{m_1}$ $p_1(t)^{l_2}p_2(t)^{m_2}$ and $p_3(t)^np_2(t)^{m_3}$ with $l_1 \leq l_2$ and $m_1 \geq m_2 \geq m_3$. Here $p_1(t), p_2(t), p_3(t)$ are distinct irreducible polynomials. Compute the invariants of M_{tor} . (The invariants of a finitely generated torsion module N is a decreasing sequence of ideals

 $\mathfrak{q}_1 \supseteq \cdots \supseteq \mathfrak{q}_r$ of k[x] such that $N \simeq \bigoplus_{i=1}^r k[x]/\mathfrak{q}_i$.)

- (c) Continuing the assumption in (b). Let $T: M_{tor} \to M_{tor}$ be given by T(m) = x * mfor all $m \in M_{\text{tor}}$. Then T is a linear transformation on the finite dimensional k-vector space M_{tor}. Determine the characteristic polynomial and the minimal polynomial of T.
- 2. (20 %) Let p be an odd prime number. Let L be the splitting field of $g(x) = (x^p$ $q_1)\cdots(x^p-q_r)$ over $\mathbb Q$ where q_1,\ldots,q_r are distinct prime numbers. Let G be the Galois group of L over \mathbb{Q} . Let Q be a p-Sylow subgroup of G.
 - (a) Prove or disprove the following statement: Q is an abelian, normal subgroup of Gand the quotient G/Q is cyclic.
 - (b) Compute the order of Q.
- 3. (20 %) Let p be a prime number. Let S_p be the group of permutations of a set of pelements.
 - (a) Let $N_P = \{ \sigma \in S_p \mid \sigma P \sigma^{-1} = P \}$ be the normalizer of P in S_p . Show that N_P is isomorphic to the semi-direct product of P and Aut(P) where Aut(P) denotes the automorphism group of P.
 - (b) Determine the number of p-Sylow subgroup in S_p .

4. (20 %)

(a) Let Γ be a free abelian group of rank $n \geq 1$. Let Γ' be a subgroup of Γ which is of rank n also. Let $\{v_1, \ldots, v_n\}$ be a basis of Γ , and let $\{w_1, \ldots, w_n\}$ be a basis of Γ' . Write

$$w_i = \sum a_{ij}v_j, \quad a_{ij} \in \mathbb{Z}.$$

Show that the index $[\Gamma : \Gamma']$ is finite and is equal to the absolute value of the determinant of the matrix $A = (a_{ij})$.

- (b) Let R be a principal ideal domain. Let E be a free module of rank n over R, and let $E^{\vee} = \operatorname{Hom}_{R}(E, R)$ be its dual module. Show that E^{\vee} is a free module over R of rank equal to n.
- 5. (15%) Let K be a field and let $|\cdot|: K \to \mathbf{R}$ be an absolute value satisfying the strong triangle inequality. That is, it satisfies (i) $|x| \ge 0$ for all $x \in K$ and |x| = 0 if and only if x = 0; (ii) |xy| = |x||y| for all $x, y \in K$ and (iii) $|x + y| \le \max(|x|, |y|)$ for all $x, y \in K$. Let K[x] be the polynomial ring over K. For any polynomial $f(x) = \sum_{i=0}^{n} a_i x^i \in K[x]$, define the norm of f(x) by the formula:

$$||f|| := \max\{|a_i| \mid i = 0, \dots, n\}.$$

Prove or disprove the following statement:

For any two polynomials $f(x), g(x) \in K[x]$, we always have ||fg|| = ||f|| ||g|| where (fg)(x) = f(x)g(x) is the product of the two polynomials f and g.