经元封

1.(20%) Let X_1, \dots, X_n be a sample from the probability density function

$$f(x|\mu,\lambda) = (\frac{\lambda}{2\pi x^3})^{1/2} \exp\{-\lambda (x-\mu)^2/2\mu^2 x\}, x > 0.$$

Find the maximum likelihood estimators of μ and λ .

2.(20%) Let X_1, \dots, X_n be i.i.d. $N(\theta, \sigma^2)$, and let θ have a double exponential distribution, that is, $\pi(\theta) = e^{-|\theta|/a}/2a$, a known. Find the mean of the posterior distribution of θ .

3.(20%) Let X_1, \dots, X_n be a sample from a $N(\mu_x, \sigma_x^2)$, and let Y_1, \dots, Y_m be a sample from a $N(\mu_y, \sigma_y^2)$. Find the likelihood ratio test for

$$H_0: \mu_x = \mu_y$$
 versus $H_1: \mu_x \neq \mu_y$,

with the assumption that $\sigma_x^2 = \sigma_y^2$.

4.(20%) Let X_1, \dots, X_n be a random sample from a $N(\theta, \sigma^2)$ population. Find an unbiased test for

$$H_0: \theta_1 \leq \theta \leq \theta_2$$
 versus $H_1: \theta < \theta_1$ or $\theta > \theta_2$.

5.(20%) Find the regression line $y = \alpha + \beta x$ such that the sum of horizontal distances between the line and $(X_1, Y_1), \dots, (X_n, Y_n)$ is minimized.