ALGEBRA

September 2003

- 1. (15%) Show that there are no non-abelian simple groups of order < 60.
- 2. (10%) Let $m \in \mathbf{Z}$ be square-free and write A for the integral closure of \mathbf{Z} in $\mathbf{Q}[\sqrt{m}]$. Show that $A = \mathbf{Z}[(1 + \sqrt{m})/2]$ if $m \equiv 1 \pmod{4}$ and $A = \mathbf{Z}[\sqrt{m}]$ otherwise.
- 3. (10%) If R is Noetherian, then R[[x]] is also Noetherian.

4. (15%)

- (a) Let R be a commutative ring and I an ideal contained in every maximal ideal of R. Suppose that M is a finitely generated R-module and IM = M. Then M = 0.
- (b) Let R be a local ring and M a finitely generated projective R-module. Then M is free.

5. (15%)

- (a) For each positive integer n, there exists an extension L of a field K such that $Gal(L/K) \simeq S_n$.
- (b) Is every finite group isomorphic to some Galois group Gal(F/K) for some extension F of some field K? Justify your answer.
- **6.** (15%) Are the following polynomial equations solvable by radicals over \mathbf{Q} ? Explain your answers.
 - (a) $x^n 1 = 0, n \ge 7, n \in \mathbb{N}$.
 - (b) $x^5 7x^2 + 7 = 0$.

7. (20%)

- (a) Let L be a cyclic extension of a field K of degree n and $Gal(L/K) = \langle \sigma \rangle$. For $\alpha \in L \setminus \{0\}$, show that the norm $N_{L/K}(\alpha) = 1$ if and only if there exists $\beta \in L \setminus \{0\}$ such that $\alpha = \beta/\sigma(\beta)$.
- (b) Let $\operatorname{char} K/n$ and K contain a primitive n-th root of unity. Show that if L is a cyclic extension of K of degree n, then $L = K(\alpha)$, where α satisfies $x^n a = 0$ for some $a \in K$. Conversely, let $a \in K$. Show that if α is a root of $x^n a$, then $K(\alpha)$ is a cyclic extension of K of degree d with d|n and $\alpha^d \in K$.