

September 2005

- 1. (20%) Show that there are five isomorphism classes of groups of order 12. They are represented by
 - (a) the cyclic group \mathbf{Z}_{12} ;
 - (b) the product of cyclic groups $\mathbb{Z}_2 \times \mathbb{Z}_6$;
 - (c) the alternating group A_4 ;
 - (d) the dihedral group D_6 ;
 - (e) the group generated by x, y, with relations $x^4 = 1$, $y^3 = 1$, $xy = y^2x$.
- **2.** (20%) Let K be an arbitrary field and let $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n, g(x) = b_0 x^m + b_1 x^{m-1} + \dots + b_m \in K[x]$ with $a_0 b_0 \neq 0$.
 - (a) Show that f(x) and g(x) have a common nonconstant factor if and only if their resultant R(f,g) is zero.
 - (b) Assume $f(x) = a_0(x \alpha_1)(x \alpha_2) \cdots (x \alpha_n)$. Show that

$$R(f, f') = a_0^{2n-1} \prod_{i \neq j} (\alpha_i - \alpha_j),$$

where f' is the derivative of f. Moreover, f(x) has a multiple root if and only if R(f, f') = 0.

- **3.** (20%)
 - (a) Show that any **Z**-module can be imbedded in an injective **Z**-module. (Bonus: You get extra 10 points by showing that any module can be imbedded in an injective module.)
 - (b) Assuming (a), show that any module has a unique injective resolution up to homotopy equivalence.
- 4. (20%) Let K be a finite separable extension of a field k. Show that there exists an element $\alpha \in K$ such that $K = k(\alpha)$. (Hint: Consider that k is finite or k is infinite separately.)
- 5. (10%) Let p be a prime integer and K be the splitting field of x^p-1 over \mathbb{Q} . Determine the Galois group $\operatorname{Gal}(K/\mathbb{Q})$. (Explain your answer in detail.)
- 6. (10%) If R is Noetherian, then R[x] is also Noetherian.