静。繪

國立中央大學數學系博士班資格考試試題

科目:代數

- 1. Describe the Galois groups of the following polynomials:
 - (a) $x^3 3x + 1$.
 - (b) $x^5 2$.

(10 pts)

- 2. Let \mathbb{F}_{p^n} be a finite field of p^n elements, p is a prime number.
 - (a) Explain why $\mathbb{F}_{p^n}/\mathbb{F}_p$ is a finite Galois extension.
 - (b) Let $\sigma_p: \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ be defined by $\sigma_p(x) = x^p$. Show that

$$\operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_{p^n}) = <\sigma_p>$$

(the cyclic group generated by σ_p).

(10 pts)

- 3. (a) Give the definition and an example of Noetherian ring.
 - (b) State the Hilbert Basis Theorem.
 - (c) State the fundamental structure theorem for finitely generated modules over a P.I.D..

(15 pts)

- 4. (a) Let $F \subset E$ be an algebraic fields extension. Show that any subring D of E containing F is a subfield of E.
 - (b) Let C be the field of complex numbers. Show that

$$\bar{\mathbb{Q}} = \{\alpha \in \mathbb{C} | \alpha \text{ is algebraic over } \mathbb{Q} \}$$

is a subfield of \mathbb{C} .

(10 pts)

- 5. (1) Is 2 an irreducible element in $\mathbb{Z}[\sqrt{-3}]$? Prove your answer.
 - (2) Is 2 a prime element in $\mathbb{Z}[\sqrt{-3}]$? Prove your answer.

(15 pts)