ALGEBRA

Qualify Exam., August 2007

- 1. (25 %)
- (a) Show that no group of order 224 is simple.
- (b) Classify groups of order 4p, where p is a prime greater than 3 and $p \equiv 3 \pmod{4}$. Are they always solvable? (Justify your answer)
- **2.** (25 %)
- (a) Let I be the set of all non-units of $\mathbf{Z}[i]$, where \mathbf{Z} is the ring of integers and $i = \sqrt{-1}$. Is I an ideal of $\mathbf{Z}[i]$? (Justify your answer)
- (b) Show that for any non-trivial ideal J of $\mathbf{Z}[i]$, the quotient ring $\mathbf{Z}[i]/J$ is a finite ring.
- (c) Determine all prime elements in $\mathbf{Z}[i]$. (Justify your answer)
- **3.** (25 %)
- (a) Let R be an integral domain with quotient field Q and N be any R-module. Show that $Q \otimes_R N = 0$ if and only if N is a torsion module.
- (b) Show that tensor products do not commute with direct products in general. (Hint: Consider the direct product of $M_i = \mathbf{Z}/p^i\mathbf{Z}$ with p a prime.)
- (c) Show that a finitely generated module over a P.I.D. is projective if and only if it is
- (d) Show that if R is a P.I.D but not a field, then no finitely generated R-module is injective.
- 4. (25 %)
- (a) Is the equation

$$f(x) = x^5 - 10x^4 + 2x^3 - 24x^2 + 2 = 0$$

solvable by radical over Q? (Justify your answer)

Here \mathbf{Q} is the field of rational numbers.

(b) Let n be a positive integer and ξ be a primitive nth root of unity over \mathbf{Q} . Determine

$$[\mathbf{Q}(\xi+\frac{1}{\xi}):\mathbf{Q}].$$

(Justify your answer)

(c) Let $A = \{\sqrt{p} \mid p \text{ is a prime}\}$ and $L = \mathbf{Q}(A)$. Show that $\mathrm{Gal}(L/\mathbf{Q})$ has uncountably many subgroups of index 2 and there are only countably many quadratic field extensions of \mathbf{Q} in L.