

國立中央大學數學系 博士班資格考試 〈代數〉試題 2007年2月

- (1) (15%) Consider a finite group G with an abelian normal subgroup $H \triangleleft G$ such that the quotient group Q := G/H is also abelian. And consider the condition that for every $g \in G$, the automorphism $\Phi_g : H \longrightarrow H$, $h \mapsto ghg^{-1}$, is the identity map.
 - (a) Find a non-abelian group G that satisfies the above conditions.
 - (b) Show that if Q is cyclic then G must be abelian.
- (2) (15%) Suppose K is a field and m is a positive integer relatively prime to the characteristic of K. Let $K(\zeta_m)/K$ denote the splitting field of $X^m 1$.
 - (a) For the case where m is a prime number, show that the Galois group $\operatorname{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q}) \simeq (\mathbb{Z}/m\mathbb{Z})^*$, the units group of the ring $\mathbb{Z}/m\mathbb{Z}$.
 - (b) Let \mathbb{F}_q be a finite field with q elements. Then $\operatorname{Gal}(\mathbb{F}_q(\zeta_m)/\mathbb{F}_q) \simeq \mathbb{Z}/n\mathbb{Z}$, the cyclic group of order n, where n is the smallest natural number such that $q^n \equiv 1 \pmod{m}$.
- (3) (10%) Suppose that L_1/K and L_2/K are abelian extensions (Galois extensions with abelian Galois groups). Is it always true that L_1L_2/K is also abelian? Prove or disprove it.
- (4) (10%) Prove that if K is a field, then K[X,Y], the polynomial ring in two variables, is a Noetherian ring.
- (5) (30%) Let $A = \mathbb{C}[X]$ and $K = \mathbb{C}(X)$.
 - (a) Suppose $p(X) \in \mathbb{Q}[X]$, $\deg(p(X)) = d$, is irreducible over \mathbb{Q} . Show that the ring A/(p(X)) is isomorphic to the direct sum of d-copies of \mathbb{C} .
 - (b) An extension L/K with |L:K|=3 is a Galois extension if and only if $L=K(\alpha^{\frac{1}{3}})$ for some $\alpha\in K^*$.
 - (c) Let \mathcal{O} be the integral closure of A in a quadratic extension $K(\beta^{\frac{1}{2}})/K$, where $\beta \in A$ is square free in the sense that if p(X) is an irreducible