(20%) 1. For a group G and a prime number p, define the p-part G_p of G as follows:

$$G_p = \{x \in G : \text{ the order of } x \text{ is a power of } p\}$$

A group G is said to be a p-group $G = G_p$.

- (a) Prove or disprove that, for a finite group G, G is a p-group if and only if the order of G is a power of p.
- (b) Prove or disprove that G is finite if and only if G_p is finite for all primes p.
- (c) Prove that every finite p-group G has a nontrivial center.
- (d) Prove that every finite p-group G is solvable.

(20%) 2. Let R be an integral domain.

- (a) Find the group of units in R[x], the ring of polynomials over R.
- (b) Find the group of units in R[[x]], the ring of formal power series over R.
- (c) Suppose that R is a field. Prove or disprove that R[x] is a unique factorization domain.
- (d) Suppose that R is a field. Prove or disprove that R[[x]] is a unique factorization domain.

(15%) 3. Let K be a field and $f(x) = x^3 - 3x + 1 \in K[x]$.

- (a) Prove that f(x) is separable over K if and only if char(X) = 3.
- (b) Prove that f(x) is either irreducible or splits into linear factors in K.
- (c) Let L be a splitting field of f(x) over K. Prove or disprove that [L:K] divides 3.
- (15%) 4. Let F be a finite field with char(F) = p > 0 and let \bar{F} be algebraic over F and algebraically closed. For a positive integer n, denote F_n to be the spiltting field of $x^n 1$ in \bar{F} .
- (a) Show that $\bar{F} = \bigcup_{n \geq 1} F_n$ and $[\bar{F} : F] = \infty$.
- (b) Show that for any positive integer n with $p \mid n$, $F_n = F_{n/p}$.
- (c) Prove or disprove that, for any positive integers m and n, $F_m \cap F_n = F$ if and only if gcd(m, n) is a power of p.
- (30%) 5. Let R be a principal ideal domain and M a finitely generated R-module.
- (a) For $S = R \setminus \{0\}$, prove that $M \underset{R}{\otimes} S^{-1}R$ is a vector space over $S^{-1}R$ and is isomorphic to $S^{-1}M$. Show that $\operatorname{rank}_R(M) = \dim_{S^{-1}R} \left(S^{-1}M\right)$.
- (b) For a prime ideal \wp of R, denote $M_{\wp} = S^{-1}M$, where $S = A \setminus \wp$. Prove or disprove that M is projective R-module if and only if M_{\wp} is projective over R_{\wp} for each prime ideal \wp of R.