- 5. Let p be a prime, K a finite field of characteristic p, a an element of K, and $P(X) = X^p X + a$. Let C be an algebraic closure of K.
 - a. (5 pts.) Let α be a root of P(X) in C. Determine the other roots of P(X) in C.
 - b. (5 pts.) Deduce that either the polynomial P(X) has all its roots in K, or it is irreducible in K[X].
 - c. (5 pts.) Let $a \neq 0$ in \mathbb{F}_p . Show that the splitting field of the polynomial P(X) over \mathbb{F}_p is an extension of degree p of \mathbb{F}_p .
 - d. (5 pts.) Let n be an integer. Show that the polynomial $X^p X + n$ is irreducible in $\mathbb{Q}[X]$ for an infinite number of values of n.