counter example.

(c) Let K be the field of fraction of A and let L = K(y) be a finite separable degree d > 1 extension of K. Moreover y satisfies the equation

$$x_1Y^d + g(x_1, \dots, x_n, Y) = 0$$

where  $g(x_1, \ldots, x_n, Y) \in k[x_1, \ldots, x_n, Y]$  with Y-degrees less than d. Let  $B = k[x_1, \ldots, x_n, y]$ .

- (i) (5 %) Is it true that B is a finitely generated A-module?
- (ii)(9 %) Let C be the integral closure of A in L. Show that there exists a basis  $v_1, \ldots, v_d$  of L over K such that  $C \subseteq D = \sum_{j=1}^d A v_j$  and that D/C is a torsion A-module.
- (d) (7 %) Let  $\mathfrak{q}$  be a maximal ideal of C and let  $\mathfrak{p} = \mathfrak{q} \cap A$ . Show that  $\mathfrak{p}$  is a maximal ideal of A and  $C/\mathfrak{q}$  is a finite extension of  $A/\mathfrak{p}$ .
- (e) (8 %) Let  $\mathfrak{q}$  be a prime ideal of C such that  $\mathfrak{q} \cap A = (f)$  for some irreducible polynomial f. Show that  $C_{\mathfrak{q}}$  is the integral closure of  $A_{(f)}$  in L and  $C_{\mathfrak{q}}$  is also a discrete valuation ring.
- (4) Let L be a finite Galois extension of the field K with Galois group G = Gal(L/K). Let  $n \ge 1$  be positive integer.
- (a) (9 %) Prove that  $L \otimes_K L \simeq \prod_{\sigma \in G} \sigma L$  as L-algebras.
- (b) Let  $GL_n(L)$  be the group of  $n \times n$  invertible matrices with entries in L.
- (i) (3 %) Verify that G acts on  $GL_n(L)$ .
- (ii) (12 %) A cross homomorphism of G into  $GL_n(L)$  is a map  $\phi: G \to GL_n(L)$  satisfying the relation  $\phi(\sigma\tau) = \phi(\sigma)\sigma\phi(\tau) \forall \sigma, \tau \in G$ . Show that for any cross homomorphism  $\phi: G \to GL_n(L)$ , there exists an  $a \in GL_n(L)$  which depends on  $\phi$  such that  $\phi(\sigma) = a^{-1}\sigma a$ .