

國立中央大學數學系 博士班資格考試《分析》試題 2001年9月

- 15% 1. If (X, \mathcal{M}, μ) is a measure space and if $f \in L^r(X, \mathcal{M}, \mu)$ for some $0 < r < \infty$. Show that $\lim_{p \to 0} \int_X \left| f \right|^p d\mu = \mu(\{x \in X | f(x) \neq 0\})$.
- 15% 2. Use the function $y \sin x e^{-xy}$ to show the following:

$$\int_{0}^{\infty} \frac{\sin x}{x} \left(\frac{1 - e^{-x}}{x} - e^{-x} \right) dx = \frac{1}{2} \log 2.$$

- 15% 3. Assume $f \in L^r$ for some $r < \infty$. Show that $\lim_{p \to \infty} ||f||_p = ||f||_{\infty}$.
- 15% 4. Let \mathcal{B}_n be the smallest σ -algebra containing all open sets in \mathbf{R}^n and let $\mathcal{M}_n = \{E \in \mathbf{R}^n | \exists A, B \in \mathcal{B}_n \text{ s.t.} A \subset E \subset B \text{ and } m_n(B-A) = 0\}$, where m_n is the product of n Lebesgue measures on \mathbf{R}^1 , i. e., $m_n = m_1 \times \ldots \times m_1$. Prove that $\mathcal{B}_i \times \mathcal{B}_j \subset \mathcal{M}_i \times \mathcal{M}_j$ but $\mathcal{B}_i \times \mathcal{B}_j \neq \mathcal{M}_i \times \mathcal{M}_j$.
- 10% 5. If $\mu, \nu : \mathcal{B}_1 \to [0, \infty)$ are Borel measures with $\mu \times \nu << m_2$. Show that $\frac{d(\mu \times \nu)}{d m_2}$ has the form f(x)g(y).
- 10% 6. Let I = [a,b], $f \in C(I)$, $g \in BV(I)$ and $F(x) = \int_a^x f \, dg$, $a \le x \le b$. Show (1) F need not be continuous
 - (2) If g is continuous at x_0 then F is also continuous at x_0 .
- 10% 7. Let $f \in C[0,1]$ and let $f_n(x) = f(x^n)$, n = 1,2,... Assume $\{f_n\}$ is equicontinuous on [0, 1], show that f = constant.
- 10% 8. Consider the Lebesgue measure space $(\mathbf{R}, \mathcal{M}, \mathbf{m})$. Let $E \in \mathcal{M}$, $\mathbf{m}(E) > 0$ and $0 < \alpha < \mathbf{m}(E)$. Show that $\exists F \subset E, F \in \mathcal{M}$ so that $\mathbf{m}(F) = \alpha$.