分析 资格差 2004-FALL

15% 1. Let $1 \le p < r < q < \infty$ and suppose that $f \in L^p \cap L^q$. Show that

$$\log \|f\|_r \leq \frac{\frac{1}{r} - \frac{1}{q}}{\frac{1}{p} - \frac{1}{q}} \log \|f\|_p + \frac{\frac{1}{p} - \frac{1}{r}}{\frac{1}{p} - \frac{1}{q}} \log \|f\|_q.$$

15% 2. Assume $f \in L^p(\mathbf{R}^n)$, $1 \le p < \infty$. Show that

$$\lim_{y \to 0} \int |f(x+y) - f(x)|^p dx = 0.$$

- 15% 3. Let $f \in L^1(\mathbf{R}^n)$. Prove that $m(\{x|Mf(x) \ge t\}) \le \frac{2^n \|f\|_1}{t}$, $0 < t < \infty$, where m is the Lebesgue measure and Mf is the Hardy-Littlewood maximal function for f (i.e., $Mf(x) = \sup_{x \in Q} \frac{1}{m(Q)} \int_{Q} |f(t)| dt$).
- 10% 4. If $\{\alpha_j\}_{j=1}^{\infty} \subset \mathbb{R}$ is a sequence, Show that $\int_{0}^{\infty} \sum_{j \leq 1/h} |j\alpha_j| dh = \sum_{j=1}^{\infty} |\alpha_j|$.
- 5. Let I = [0,1], $f \in AC(I)$ (i.e., f is absolutely continuous on I), $E \subset I$ and m(E) > 0. Show that

$$\int_{0}^{1} |f(x)| dx \le \int_{0}^{1} |f'(x)| dx + \frac{1}{m(E)} \int_{E} |f(x)| dx$$

where m is the Lebesgue measure on I.

15% 6. Let $f \in L^p(\mathbf{R}^n)$, $1 \le p < \infty$, $0 \le \alpha < \frac{n}{n}$ and let

$$M_{\alpha} f(x) = \sup_{x \in Q} \frac{1}{\left(m(Q)\right)^{1-\frac{\alpha}{n}}} \int_{Q} |f(t)| dt.$$

Show that $M_{\alpha}f(x) \leq \left\|f\right\|_{p}^{\frac{p\alpha}{n}} \left[M(|f|^{p})(x)\right]^{\frac{1}{p}-\frac{\alpha}{n}}$, where Mf is the same function as that defined in problem 3.

- 15% 7. Consider the Lebesgue measure space $([1,\infty),M,m)$. Define $\mu:M\to [0,\infty]$ by $\mu(E)=\int\limits_{\mathbb{R}}\frac{dx}{x}$. Show that
 - (1) $\mu \ll m, m \ll \mu$
 - $(2) L^{\infty}(\mu) = L^{\infty}(m)$
 - (3) $L^p(m) \subset L^p(\mu)$, $1 \le p < \infty$.