中央大學博士班資格考〔分析〕

Note: In the following, all functions are real-valued!

- 1. Assume f is Lebesgue integrable on \mathbb{R} . Prove that $g(y) \equiv \int_{-\infty}^{\infty} f(x)e^{-(x^2y^2)}dx$ is a bounded, continuous function on \mathbb{R} . (10%)
- 2. Let f, f_1, f_2, \cdots be measurable functions on the measure space (X, \mathcal{B}, μ) , and, $f_n \leq f_{n+1}$ for $n = 1, 2, \cdots$.
 - (a) If $f_n \to f$ in measure, prove that $f_n \to f$ almost everywhere. (10%)
 - (b) If $f_n \to f$ almost everywhere, prove or disprove that $f_n \to f$ in measure. (5%)
- 3. Let f, f_1, f_2, \cdots be Lebesgue integrable functions on [0, 1], and, $\{f_n\}_{n=1}^{\infty}$ converge uniformly to f.
 - (a) Prove or disprove that $\int_{[0,1]} f dm = \lim_{n \to \infty} \int_{[0,1]} f_n dm$, where m is the Lebesgue measure. (5%)
 - (b) If f_n is absolutely continuous on [0,1] for each $n=1,2,\cdots$. Prove or disprove that f is absolutely continuous on [0,1]. (10%)
- 4. Let λ , μ and ν be σ -finite measures on (X, \mathcal{B}) . Assume that ν is absolutely continuous with respect to μ , and, μ is absolutely continuous with respect to λ .
 - (a) If f is a nonnegative measurable function on X, prove that

$$\int_{X} f d\nu = \int_{X} f \frac{d\nu}{d\mu} d\mu. \quad (10\%)$$

- (b) Prove that $\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu} \frac{d\mu}{d\lambda}$ almost everywhere with respect to λ . (5%)
- 5. (a) Prove or disprove that $L^p([0,1]) \supseteq L^q([0,1])$, where $1 \le p < q < \infty$. (10%)
 - (b) Prove or disprove that $l^q \supseteq l^p$, where $1 \le p < q < \infty$, $l^p \equiv \{(x_1, x_2, \cdots) : \sum_{n=1}^{\infty} |x_n|^p < \infty\}$ and $l^q \equiv \{(x_1, x_2, \cdots) : \sum_{n=1}^{\infty} |x_n|^q < \infty\}$. (10%)
- 6. (a) Let $\{D_n\}_{n=1}^{\infty}$ be a sequence of closed subsets in \mathbb{R}^n . If D_1 is bounded and $D_n \supseteq D_{n+1}$ for all $n=1,2,\cdots$. Prove that $\bigcap_{n=1}^{\infty} D_n$ is nonempty. (5%)
 - (b) Let $\{E_n\}_{n=1}^{\infty}$ be a sequence of open dense subsets in \mathbb{R}^n . Prove that $\bigcap_{n=1}^{\infty} E_n$ is also dense in \mathbb{R}^n . (10%)
- 7. Let $F: l^2 \to \mathbb{R}$ be a bounded linear functional. Find the unique element (a_1, a_2, a_3, \cdots) in l^2 such that

$$F(x_1, x_2, \dots) = \sum_{n=1}^{\infty} a_n x_n$$
 for any $(x_1, x_2, \dots) \in l^2$,

and

$$\left(\sum_{n=1}^{\infty} |a_n|^2\right)^{\frac{1}{2}} = \sup\{|F(x_1, x_2, \cdots)| : \sum_{n=1}^{\infty} |x_n|^2 = 1\}. \quad (10\%)$$