

- 20% 1. Let $f \in C(I)$, $g \in BV(I)$, I = [a,b] and let $F(x) = \int_a^x f \, dg$, $x \in [a,b]$. Show that if g is continuous at x_0 then F is also continuous at x_0 .
- 20% 2. Let $E_n \subset [0,1]$ be Lebesgue measurable sets and $m(E_n) \to 1$, where m is the Lebesgue measure. Show that there is a subsequence $\{E_{n_j}\}_{j=1}^{\infty}$ so that $m(\bigcap_{i\geq 1} E_{n_j}) > 0$.
- 20%3. Let $f_n: E \to \mathbf{R}$ so that $f_n \to f$ pointwise on E, where $E \subset X$, X is a space and E is uncountable. Prove that there is an infinite set $A \subset E$ so that $f_n \to f$ uniformly on A.
- 20%4. Given a measure space $(X,M,\mu),\ 0<\mu(X)<\infty,\ f\in L^\infty(\mu)$ so that $\left\|f\right\|_\infty>0. \text{ Let }\alpha_n=\int\limits_X\left|f\right|^nd\mu,\ n=1,2,3,....\text{Show }\frac{\alpha_{n+1}}{\alpha_n}\to\left\|f\right\|_\infty.$
- 20% 5. If $\left\{f_n\right\} \subset L^p(\mathbf{R}), 1 , and <math>\left\|f_n\right\|_p \le K < \infty$ for n=1,2,... Show that there is a subsequence $\left\{f_{n_j}\right\}_{j=1}^\infty$ of $\left\{f_n\right\}_{n=1}^\infty$ and a function $f \in L^p$ so that $f_{n_j} \to f$ weakly, i.e., $\int\limits_{\mathbf{R}} f_{n_j} \, \varphi \, dm \to \int\limits_{\mathbf{R}} f \, \varphi \, dm \, \, \forall \, \varphi \in L^q$, where $\frac{1}{p} + \frac{1}{q} = 1$.