- (a) Show that f(x,y) is a Lebesgue integrable function of x, whenever $y \in \mathbb{R}$ is fixed and that $\int_{\mathbb{R}} f(x,y) d\mathcal{L}^1 x$ is a Lebesgue integrable function of y. (Comment: By the fact that f(x,y) = f(y,x), the same results hold if we switch the order of integrations).
- (b) Compute $\int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x,y) \, d\mathcal{L}^1 x \right) \, d\mathcal{L}^1 y$. (Comment: So $= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x,y) \, d\mathcal{L}^1 y \right) \, d\mathcal{L}^1 x$.)
- (c) Comment on the relation between this and Fubini's Theorem.
- 5. 18 points Let $1 \leq p < \infty$ and $E \subset \mathbb{R}^n$. Suppose that $f_k, f \in L^p(E, \mathcal{L}^n)$ and that $f_k \longrightarrow f$ pointwise \mathcal{L}^n almost everywhere on E as $k \to \infty$.
 - (a) Show that $||f||_p \leq \liminf_{k \to \infty} ||f_k||_p$.
 - (b) In case $||f||_p = \lim_{k \to \infty} ||f_k||_p$, prove or disprove that $\lim_{k \to \infty} ||f_k f||_p = 0$.
 - (c) Is possible that $||f||_p < \liminf_{k \to \infty} ||f_k||_p$? Justify your answer!
- 6. 14 points Let $\varphi \in L^1(\mathbb{R}^n, \mathcal{L}^n)$ with $\int_{\mathbb{R}^n} \varphi(x) d\mathcal{L}^n x = \alpha \in \mathbb{R}$ and let $\varphi_{\epsilon}(x) = \epsilon^{-n} \varphi(\frac{x}{\epsilon})$, $\epsilon > 0$. If $f \in L^p(\mathbb{R}^n, \mathcal{L}^n)$, then show that the function

$$f_{\epsilon}(x) = \int_{\mathbb{R}^n} f(x - y) \varphi_{\epsilon}(y) d\mathcal{L}^n y$$

converges to $\alpha f(x)$ in L^p norm.

7. 14 points Let M be the subset of all $f \in L^1([0,1], \mathcal{L}^1)$ such that $\int_{[0,1]} f(t) d\mathcal{L}^1 t = 1$. Prove that M is a closed convex subset of $L^1([0,1], \mathcal{L}^1)$ which contains infinitely many elements of minimal L^1 norm.