中央大學數學系博士生資格考:分析 (Sep. 01, 2009)

- 1. Prove or disprove the following statements.
 - (a) (10%) For any open subset of \mathbb{R} , its Lebesgue measure |G| equals $|\overline{G}|$, where \overline{G} is the closure of G.
 - (b) (10%) Let f and g are absolutely continuous functions. Then the composition $f \circ g$ is also an absolutely continuous function.
 - (c) (10%) Let f and $\{f_n\}$ be measurable functions which are defined and finite a.e. in a set E with $|E| < \infty$. If $\{f_n\}$ converges in measure on E to f, then $f_n \to f$ a.e. on E.
- 2. (10%) Construct a subset of [0,1] such that the set is closed, has measure 1/2, and contains no intervals.
- 3. (15%) Discuss the following functions of bounded variation:

$$f(x) = \begin{cases} x \sin(1/x), & \text{for } 0 < x \le 1 \\ 0, & \text{for } x = 0. \end{cases} \quad \text{and} \quad g(x) = \begin{cases} x^2 \cos(1/x), & \text{for } 0 < x \le 1 \\ 0, & \text{for } x = 0. \end{cases}$$

4. (10%) Let f be nonnegative measurable function on \mathbb{R} and p > 0. Show that

$$\int_{\mathbb{R}} [f(x)]^p dx = p \int_0^\infty t^{p-1} |\{x \in \mathbb{R} : f(x) > t\}| dt.$$

5. Find the Lebesgue integral and limits:

(a)
$$(7\%)$$
 $\int_0^1 \frac{\ln(1-x)}{x} dx;$
(b) (8%) $\lim_{n\to\infty} (L) \int_0^\infty \frac{1}{(1+x/n)^n x^{1/n}} dx.$

6. (10%) Let $f \in L^p(\mathbb{R}^n)$, $1 \leq p < \infty$ and $\frac{1}{p} + \frac{1}{p'} = 1$. Prove that

$$||f||_p = \sup_{\|g\|_{p'} \le 1} \int_{\mathbb{R}^n} f(x)g(x) dx.$$

7. (10%) Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be two complete measure spaces. Suppose h and g are integrable functions on X and Y, and define f(x,y) = h(x)g(y). Show that f is integrable on $X \times Y$ and

$$\int_{X\times Y} f \, d(\mu \times \nu) = \int_X h \, d\mu \int_Y g \, d\nu.$$