Ph.D. Qualifying Examination: Analysis

(2009.02)

歸禮

Stage Setting: In the following problems, whenever not specified, the functions are assumed be real-valued.

- 1. (15%) Let (X, \mathcal{B}, μ) be a finite measure space and f be a nonnegative measurable function on X. Prove that there exists a Cauchy sequence $\{f_n\}_{n=1}^{\infty}$ of simple functions in $L^1(X, \mu)$ such that $f_n \nearrow f$ almost uniformly if and only if $\sup\{\int_X \varphi d\mu : \varphi \text{ is simple and } \varphi \leq f\} < \infty$.
- 2. (10%) Let μ be the Lebesgue measure on [0, 1], ν be the counting measure on [0, 1] and

$$\triangle = \{(x, x) : x \in [0, 1]\}.$$

Determine whether the characteristic function χ_{\triangle} is $\mu \times \nu$ -integrable on $[0,1] \times [0,1]$. Justify your answer.

- 3. (15%) Let $\{\mu_n\}$ be an increasing sequence of measures defined on a measure space (X, \mathcal{B}) , that is, $\mu_n(A) \leq \mu_{n+1}(A)$ for all $n \geq 1$ and $A \in \mathcal{B}$. Define $\mu(A) = \lim_{n \to \infty} \mu_n(A)$ for each $A \in \mathcal{B}$.
 - (a) Prove that μ is a measure on (X, \mathcal{B}) , and μ_n is absolutely continuous with respect to μ for all n.
 - (b) Let f_n be the Radon-Nikodym derivative of μ_n with respect to μ . If $A \in \mathcal{B}$ with $\mu(A) < \infty$, prove that $f_n \nearrow 1$ almost everywhere (with respect to μ) on A.
- 4. (15%) For $x = (x_1, ..., x_n) \in \mathbb{R}^n$, let

$$K(x) = \begin{cases} \frac{1}{k} \cdot \exp(\frac{-1}{1 - |x|^2}), & |x| < 1; \\ 0, & |x| \ge 1, \end{cases}$$

where $k = \int_{|x|<1} \exp(-1/(1-|x|^2)) dx$ and $|x| = (\sum_{j=1}^n |x_j|^2)^{1/2}$. Let $K_{\varepsilon}(x) = \varepsilon^{-n} K(\frac{x}{\varepsilon})$ for $\varepsilon > 0$. Define

$$f_{\varepsilon}(x) = \int_{\mathbb{R}^n} f(t) K_{\varepsilon}(x-t) dt$$
, for all $x \in \mathbb{R}^n$.

- (a) If $f \in L^1(\mathbb{R}^n)$, prove that $||f_{\varepsilon} f||_{L^1} \to 0$, as $\varepsilon \to 0$.
- (b) Prove that $C_0^{\infty}(\mathbb{R}^n)$, the set of all infinitely differentiable functions vanishing at infinity, is norm dense in $L^1(\mathbb{R}^n)$.
- 5. (15%) Suppose μ is a finite measure on X and $f \in L^{\infty}(\mu)$ with $||f||_{\infty} > 0$. Prove that

$$\lim_{n\to\infty}\frac{\int_X|f|^{n+1}d\mu}{\int_X|f|^nd\mu}=\|f\|_\infty.$$

6. (15%) Let $(C([0,1]), \|\cdot\|_1)$ be the normed space of all continuous real-valued functions on [0,1] with the norm $\|f\|_1 = \int_{[0,1]} |f|$, and

$$A = \{ f \in C([0,1]) : f(0) = 0, f \text{ is differentiable on } (0,1) \text{ and } |f'| \le 1 \}.$$

Prove that the integral equation

$$f(x) = \frac{1}{2} \int_0^x e^{-xy} f(y) dy, \quad x \in [0, 1],$$

has a unique solution $f \in \overline{A}$, where \overline{A} is the closure of A in $(C([0,1]), \|\cdot\|_1)$.

7. (15%) Let f be a continuous function on [0,1]. Prove that

$$\lim_{n \to \infty} \frac{\int_0^1 x^n f(x) dx}{\int_0^1 x^n dx} = f(1).$$