DEPARTMENT OF MATHEMATICS NATIONAL CENTRAL UNIVERSITY

Ph. D. Qualifying Examination Spring, 2001.

Analysis

Answer all of the following questions.

1. Suppose σ is a one-to-one transformation of the set of positive integers onto itself and a_n is a non-negative real number for all $n = 1, 2, \ldots$. Prove that

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_{\sigma(n)}.$$

2. Let P be the class of all polynomials of the form

$$p(x) = \sum_{j=0}^{n} a_j x^{2j+1}.$$

Show that a continuous function f in C[0,1] can be uniformly approximated on [0,1] by a sequence in P if and only if f(0) = 0.

3. Suppose $f_n \in L^p(\mathbb{R})$, $||f_n||_p \leq M < \infty$, n = 1, 2, ..., where $1 . Suppose <math>f_n$ converges to f almost everywhere and that $g \in L^q(\mathbb{R})$, where 1/p + 1/q = 1. Show that

$$\lim_{n \to \infty} \int_{\mathbb{R}} f_n(x)g(x)dx = \int_{\mathbb{R}} f(x)g(x)dx.$$

4. Let $f:[0,1] \longrightarrow \mathbb{R}$ be continuous and of bounded variation. Assume that for each $\epsilon > 0$, $f_{|[\epsilon,1]}$ is absolutely continuous. Show that f is absolutely continuous on [0,1].