Ph. D. Qualifying Examination, 2003 Analysis

Choose any 5 problems in the following test.

- 1.(a) Prove that every function of bounded variation has at most a countable number of discontinuities.
 - (b) Let $f(x) = x \sin(1/x)$ for $0 < x \le 1$ and f(0) = 0. Show that f is bounded and continuous on [0,1], but the variation of $f, V[f;0,1] = +\infty$.
- 2. For $1 \leq p < \infty$, we define the spaces $(l^p, ||\cdot||_p)$ and $(l^\infty, ||\cdot||_\infty)$ as the following respectively

$$l^{p} = \{ \langle x_{i} \rangle_{i=1}^{\infty} : (||\langle x_{i} \rangle ||_{p})^{p} = \sum_{i=1}^{\infty} |x_{i}|^{p} \langle \infty, x_{i} \in R \, \forall i \},$$

$$l^{\infty} = \{ \langle x_{i} \rangle_{i=1}^{\infty} : ||\langle x_{i} \rangle ||_{\infty} = \sup |x_{i}| \langle \infty, x_{i} \in R \, \forall i \}.$$

Prove that l^p is complete and l^{∞} is a Banach space.

3. Let v_n be the volume of the unit ball in \mathbb{R}^n . Show by using Fubini's theorem that

$$v_n = 2v_{n-1} \int_0^1 (1-t^2)^{\frac{n-1}{2}} dt.$$

- 4. Prove Egoroff's Theorem : If $\langle f_n \rangle$ is a sequence of measurable functions that converge to a real-values function f a.e. on a measurable set E of finite measure, then given $\eta > 0$, there is a subset $A \subset E$ with $m(A) < \eta$ such that f_n converges to f uniformly on $E \setminus A$.
- 5. Let $1 \leq r$, $p_1, p_2, \dots, p_k \leq \infty$ and $\frac{1}{p_1} + \dots + \frac{1}{p_k} = \frac{1}{r}$. Prove that : if $f_1 \in L^{p_1}, \dots, f_k \in L^{p_k}$, then

$$||f_1 \cdots f_k||_r \le ||f_1||_{p_1} \cdot ||f_2||_{p_2} \cdots ||f_k||_{p_k}$$