5. Let λ and μ be two positive Borel measures on \mathbb{R}^n such that λ and μ are finite on compact sets and for every continuous function f on \mathbb{R}^n with compact support,

$$\int_{\mathbb{R}^n} f d\lambda = \int_{\mathbb{R}^n} f d\mu.$$

Show that $\lambda = \mu$.

- 6. Let $f_n \to f$ on [0,1] in the following sense: for every x in [0,1], if $x_n \to x$, then $f_n(x_n) \to f(x)$. Show that f is continuous if all f_n are continuous.
- 7. Let $\{G_n\}_n$ be a sequence of non-empty open sets in [0,1] with the Lebesgue measures $m(G_n) \leq 1/2^n$ for $n = 1, 2, \ldots$ Let

$$f(x) = \sum_{n=1}^{\infty} m(G_n \cap [0, 1]), \quad 0 \le x \le 1.$$

Show that f is continuous, non-decreasing, and that $f'(x) = +\infty$ for all x in $\bigcap_{n=1}^{\infty} G_n$.

8. Prove or disprove: There exist continuous real-valued functions f and g defined on [0,1] such that f(x) = g(x) for uncountably many points x, but in every interval there exists a point x where $f(x) \neq g(x)$.