6.(a) Let $K \in L^1(\mathbb{R}^n)$, $\int_{\mathbb{R}^n} K = 1$ and $K_{\epsilon}(x) = \epsilon^{-n} K(\frac{x}{\epsilon})$. Define

$$f_{\epsilon}(x) = (f * K_{\epsilon})(x) = \int_{\mathbb{R}^n} f(t)K_{\epsilon}(x-t) dt, x \in \mathbb{R}^n.$$

Prove that if $f \in L^p(\mathbb{R}^n)$, $1 \leq p < \infty$, then $||f_{\epsilon} - f||_p \to 0$ as $\epsilon \to 0$.

- (b) Prove that C_0^{∞} is dense in $L^p(\mathbb{R}^n)$ for $1 \leq p < \infty$.
- 7.(a) Let f be a nonnegative function which is integrable over a measurable E. Prove that given any $\epsilon > 0$ there is $\delta > 0$ such that for every set $A \subset E$ with $m(A) < \delta$ we have

$$\int_A f \ < \ \epsilon.$$

(b) Let f be a Lebesgue integrable function on [a, b], and

$$F(x) = F(a) + \int_{a}^{x} f(t)dt.$$

Prove that F is absolute continuous on [a, b] and F'(x) = f(x) for almost all x in [a, b].