中央大學數學系博士班資格考實分析試題(九十五年二月)

第1-6 題, 每題 15 分; 第7 題 10 分。總分 100 分。

- 1. Let $f:[0,1]\mapsto [0,1]$ be continuous. Show that the graph of f has zero measure.
- 2. Write $C_b(\mathbb{R}, \mathbb{R})$ to indicate the space of functions $f : \mathbb{R} \to \mathbb{R}$, which is continuous and bounded. Let $B = \{ f \in C_b(\mathbb{R}, \mathbb{R}) \mid f(x) > 0 \text{ for all } x \in \mathbb{R} \}$. Is B open in $C_b(\mathbb{R}, \mathbb{R})$?
- 3. Let

$$\sigma(x) = \begin{cases} x^3 + \frac{x}{|x|}, & \text{if } -1 \le x \le 1 \text{ and } x \ne 0 \\ 0, & \text{if } x = 0 \end{cases}$$

Find the Lebesgue decomposition and Radon-Nikodym derivative of $d\sigma$ with respect to dx, where dx is the Lebesgue measure on [-1, 1].

4. Let $f(x) \geq 0$ be in $L^1(\mathbb{R})$ with Lebesgue measure such that $\int_{-\infty}^{\infty} f(x) dx = 1$. For $\varepsilon > 0$, let $f_{\varepsilon} = \frac{1}{\varepsilon} f(\frac{x}{\varepsilon})$ and let $\phi \in C_0(\mathbb{R})$, the continuous function on \mathbb{R} with compact support. Recall

$$(h * g)(x) = \int_{-\infty}^{\infty} h(x - t)g(t) dt$$
 for $h, g \in L^{1}(\mathbb{R})$.

Prove that $\phi * f_{\varepsilon} \to \phi$ uniformly as $\varepsilon \to 0$.

5. For $f \in L^1(\mathbb{R})$ define the Fourier transform \hat{f} of f by

$$\hat{f}(x) = \int_{-\infty}^{\infty} f(t)e^{-ixt} dt, \qquad x \in \mathbb{R}.$$

Show that if f and g belong to $L^1(\mathbb{R})$, then $\widehat{f * g}(x) = \widehat{f}(x)\widehat{g}(x)$.

6. Let $f \in L^1([a,b])$. Show that there is a set $A \subset (a,b)$ such that $\lambda(A^c \cap [a,b]) = 0$, where λ is the Lebesgue measure, and

$$\lim_{h \to 0^+} \frac{1}{h} \int_x^{x+h} |f(t) - z| \, dt = |f(x) - z|$$

$$= \lim_{h \to 0^+} \frac{1}{h} \int_{x-h}^x |f(t) - z| \, dt$$

for all $z \in \mathbb{C}$ and all $x \in A$.

7. Denote by $C(\mathbb{R})$ the linear space of all real valued continuous functions on \mathbb{R} . Show that the linear transformation $T:C(\mathbb{R})\mapsto C(\mathbb{R})$ defined by

$$Tf(t) = \int_0^t f(x) \, dx$$

has no eigenvalue.