NATIONAL CENTRAL UNIVERSITY

Real Analysis Ph.D. Qualifying Exam

August 27th, 2007

There are 7 question sets of total 100 points.

- 1. 12 % Let $A \subset \mathbb{R}^n$ with positive Lebesgue measure $\mathcal{L}^n(A)$. Prove or disprove that for any $0 < \theta < \mathcal{L}^n(A)$, there is a compact $K \subset A$ such that $\mathcal{L}^n(K) = \theta$.
- 2. 12 % Let $f_k : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a sequence of Lebesgue measurable functions. Prove that the set of points in \mathbb{R}^n for which $\{f_k\}$ converges is a Lebesgue measurable subset of \mathbb{R}^n .
- 3. 16% Let $I = [0,1] \times [0,1]$ and $f(x,y) = \begin{cases} (xy-1)^{-1}, & \text{if } xy-1 \neq 0; \\ 0, & \text{if } xy-1 = 0. \end{cases}$ Find all p > 0 so that $f \in L^p(I, \mathcal{L}^2)$.
- 4. 12 % Compute, for t > 0, $\lim_{n \to \infty} \int_{[0,n]} \left(1 \frac{x}{n}\right)^n x^{t-1} d\mathcal{L}^1(x) = ?$ Give reasons for the steps you take in your computation.
- 5. 16% Suppose that $f_k \to f$ a.e. and that $f_k, f \in L^p(\mathbb{R}^n, \mathcal{L}^n), 1 . If the <math>L^p$ norm $||f_k||_p \leq M < +\infty \quad \forall k \in \mathbb{N}$, show that $\int f_k g \, d\mathcal{L}^n \to \int fg \, d\mathcal{L}^n$, $\forall g \in L^{p'}$. Here $p' = \frac{p-1}{p}$ is the conjugate exponent of p. What happen if p = 1?
- 6. 18% Let $p \in (1, \infty)$. Prove that the unit ball of $L^p(\mathbb{R}^n, \mathcal{L}^n)$, which is the set $\{f \in L^p(\mathbb{R}^n, \mathcal{L}^n) : \|f\|_p \le 1\}$ is strictly convex: i.e. If $f, g \in L^p(\mathbb{R}^n, \mathcal{L}^n)$, $\|f\|_p = \|g\|_p = 1$, $f \ne g$, and $h = \frac{f+g}{2}$, then $\|h\|_p < 1$. Show that the result fails to hold when p = 1 or ∞ .
- 7. 14 % Let $f: \mathbb{R}^n \longrightarrow [0, \infty)$ be Lebesgue integrable and $f \equiv 0$ outside a ball of positive radius on \mathbb{R}^n . Show that there is $b \in \mathbb{R}^n$ so that

$$b \cdot v \int_{\mathbb{R}^n} f(x) d\mathcal{L}^n(x) = \int_{\mathbb{R}^n} (x \cdot v) f(x) d\mathcal{L}^n(x)$$
 for $v \in \mathbb{R}^n$.