DEPARTMENT OF MATHEMATICS NATIONAL CENTRAL UNIVERSITY

Ph. D. Qualifying Examination Fall, 2000.

Real Analysis

- 1. Let f be a continuous function one-to-one from a compact space X onto a Hausdorff space Y. Prove that f is an homeomorphism.
- 2. Let X and Y be metric spaces. Let $\{f_n\}_n$ be a sequence of continuous functions from X into Y which converge to a function f uniformly on each compact subset of X. Show that f is continuous.
- 3. Let X and Y be compact Hausdorff spaces. Show that for each continuous real-valued function f on $X \times Y$ and each $\epsilon > 0$, there are continuous real-valued functions g_1, \ldots, g_n on X and h_1, \ldots, h_n on Y such that for each $(x, y) \in X \times Y$ we have

$$\left| f(x,y) - \sum_{i=1}^{n} g_i(x)h_i(y) \right| < \epsilon.$$

4. Prove that if a real-valued function f is integrable on [a, b] and

$$\int_{a}^{x} f(t) dt = 0$$

for all x in [a, b] then f(t) = 0 a.e. in [a, b].

- 5. (a) Show that the set $\mathbb{R}^{n-1} \times \{0\}$ has measure zero in \mathbb{R}^n .
 - (b) Let $[0,1]^2 = [0,1] \times [0,1]$. Let $f : [0,1]^2 \longrightarrow \mathbb{R}$ be defined by setting f(x,y) = 0 if $y \neq x$ and f(x,y) = 1 if y = x. Show that f is integrable over $[0,1]^2$.