

1. (20%) Let D be an open set in $R \times R^{n+1}$ with an element of D written as (t, x), and $f: D \to R^n$ be a continuous function. Consider the following differential equation

$$\begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x_0. \end{cases}$$
 (1)

Prove the following statements respectively:

- (a) For any $(t_0, x_0) \in D$ there is at least one solution of (1) passing through (t_0, x_0) .
- (b) If, in addition, f(t,x) is locally lipschotzian with respect to x in D, then for any (t_0,x_0) in D, there exists a unique solution $x(t,t_0,x_0)$ of (1) passing through (t_0,x_0) .
- 2. (20%) Consider the linear system

$$x'(t) = A(t)x(t), (2)$$

where $A(t) = (a_{ij}(t))_{n \times n}$ and the a_{ij} for $i, j = 1, \dots, n$ are continuous real valued functions on the interval $(-\infty, +\infty)$.

- (a) Suppose there is a constant K such that a fundamental matrix X of Eq. (2) satisfies $||X(t)|| \leq K, t \geq \beta$ and $\liminf_{t \to \infty} \int_{\beta}^{t} \operatorname{trace}(A(s)) ds > -\infty$. Prove that X^{-1} is bounded on $[\beta, \infty)$ and no nontrivial solution of Eq. (2) approaches zero as $t \to \infty$.
- (b) Let B(t) be a continuous real $n \times n$ matrix for $t \ge \beta$ with $\int_{\beta}^{\infty} ||A(t) B(t)|| dt < \infty$. Prove that every solution of

$$y'(t) = B(t)y(t) \tag{3}$$

is bounded on $[\beta, \infty)$. For any solution x of Eq. (2), prove there is a unique solution y of Eq. (3) such that $x(t) - y(t) \to 0$ as $t \to \infty$.

3. (20%) Consider the van der Pol equation

$$x'' + \epsilon(x^2 - 1)x' + x = 0. (4)$$

Let Γ be the unique asymptotically stable limit cycle for every $\epsilon > 0$. Let $D = \{(x,y)|x^2+y^2<3\}$. Prove $\Gamma \not\subset D$. (State the theorem used.)

4. Consider the following Predator-Prey system

$$\begin{cases} \frac{dx}{dt} = x(\gamma(1 - \frac{x}{K}) - \frac{my}{a+x}) \\ \frac{dy}{dt} = (\frac{mx}{a+x} - d)y, \\ x(0) > 0, y(0) > 0. \end{cases}$$
 $\gamma, K, m, a, d > 0$ (3)

For various possible cases, do the following:

- (a) (15%) Do the stability analysis for each equilibrium with nonnegative components.
- (b) (5%) Find the stable manifold of each saddle point.
- 5. Let v(t, a) be the solution of

$$v''(t) + t\sin(v(t)) = 0,$$

$$v'(0) = 0, v(0) = a.$$

Prove that v(t, a) is oscillatory over $[0, \infty)$