National Central University PhD Qualifying Examination for Graph Theory

February 2006

§本試題使用 D. B. West 書中的符號與定義。

- 1. Show that if G is bipartite, then $\chi'(G) = \Delta(G)$. (10%)
- 2. (a) State and prove the Brooks' Theorem. (10%)
 - (b) Show that Brooks' Theorem is equivalent to the following statement: every (k-1)-regular k-critical graph is a complete graph or an odd cycle. (10%)
- 3. Prove that if G is a 3-rugular graph then $\kappa(G) = \kappa'(G)$. (10%)
- 4. Show that the vertices of a digraph D can be covered using at most $\alpha(G)$ pairwise vertex-disjoint dipaths. (10%)
- 5. Show that if $\binom{n}{p} 2^{1 \binom{p}{2}} < 1$, then R(p, p) > n.(10%)
- 6. (a) Show that R(3,4) = 9. (5%)
 - **(b)** Show that R(3,5) = 14. (5%)
- 7. (a) Show that $\alpha(G) \ge \sum_{v \in V(G)} \frac{1}{d(v)+1}$ for every graph G. (5%)
 - **(b)** Using (a) to show that $\alpha(G) \ge \frac{n(G)}{\overline{d}+1}$, where $\overline{d} = \frac{2e(G)}{n(G)}$. (5%)
- 8. Show that for any positive integer *k*, there exists a triangle-free graph with chromatic number *k*. (10%)
- 9. (a) For which k there exists a planar k-regular graph? Show your work. (5%)
 - **(b)** For which *k* there are no planar *k*-regular graphs? Show your work. (5%)