- 1. (10%) Let $\tau(G)$ denote the number of spanning trees of a graph G. Find the value of $\tau(K_n e)$ and prove your result by using Cayley's Formula, $\tau(K_n) = n^{n-2}$.
- 2. If C is a cycle, and e is an edge connecting two nonadjacent vertices of C, then we call e a *chord* of C. Prove or disprove the following statements.
 - (a) (5%) If every vertex of a graph G has degree at least 3, then G contains a cycle with a chord.
 - (b) (10%) If G has $n \ge 4$ vertices and 2n-3 edges, then G contains a cycle with a chord.
- 3. G is a graph with n vertices where $n \geq 4$.
 - (a) (15%) Suppose $\deg x + \deg y \ge n$ for every nonadjacent vertices x,y of G. Show that G contains a Hamiltonian cycle.
 - (b) (5%) Suppose $\deg x + \deg y \ge n-1$ for every nonadjacent vertices x,y of G. Show that G contains a Hamiltonian path.
 - (c) (5%) Suppose G contains at least $\binom{n-1}{2} + 2$ edges. Show that G contains a Hamiltonian cycle.
- 4. (20%) Let $\alpha'(G)$ denote the maximum size of matching in a graph G and $\beta'(G)$ be the minimum size of edge cover of G. Prove that if G has n vertices without isolated vertices, then $\alpha'(G) + \beta'(G) = n$.
- 5. (10%) $\chi(G)$ is the least k such that G is k-colorable and the maximum degree is denoted by $\Delta(G)$. Prove that $\chi(G) \leq \Delta(G) + 1$.
- 6. (10%) G is a planar graph. Show that G has a vertex of degree at most 5.
- 7. (10%) Show that among six persons it is possible to find three mutual acquaintances or three mutual non-acquaintances.