台灣聯合大學系統九十二學年度轉學生入學試題卷

類組: B-5 年級: 3 節次: 1 科目: 高等微積分

共 / 頁第 / 頁

1. (20%) Find the interval of convergence of the power series

$$\sum_{n=1}^{\infty} \ln \left(\frac{n+1}{n} \right) (x-1)^n.$$

Give sufficient reasons to support your answer.

2. For $\alpha > 0$, we denote by H_{α} the set of all functions on the bounded closed interval [a,b] such that

$$|f(x) - f(y)| \le M|x - y|^{\alpha}$$

for some constant M and all points $x, y \in [a, b]$.

(a) (10%) Show that if $\alpha < \beta$, then $H_{\beta} \subseteq H_{\alpha}$.

(b) (10%) Show that if $\alpha > 1$, then H_{α} contains the constant functions only.

- 3. (15%) A function f(x) on the real line is called periodic if there is a constant p > 0 such that f(x+p) = f(x) for all real x. Show that a continuous periodic function on the real line is uniformly continuous there.
- 4. (20%) Let $\{f_n\}$ be a sequence of continuous functions on [a, b] converging uniformly to a function f. Let $\{x_n\}$ be a sequence of points in [a, b] converging to a point c. Show that

$$\lim_{n\to\infty} f_n(x_n) = f(c).$$

5. Let

$$P(x,y) = -\frac{y^3}{(x^2 + y^2)^2}, \qquad Q(x,y) = \frac{xy^2}{(x^2 + y^2)^2}$$

and let Ω be a plane region with the origin in its interior and with a simple closed curve C_1 as its boundary. Let C_2 be another simple closed curve lying in the interior of Ω and enclosing the origin.

(a) (15%) Prove that the line integrals

$$\oint_{C_1} P dx + Q dy = \oint_{C_2} P dx + Q dy.$$

(b) (10%) Let C_3 be the limaçon $r=2+\cos\theta$ (in polar coordinates). Evaluate the line integral

$$\oint_{C_3} P \, dx + Q \, dy.$$

